We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The purpose of this article is to prove a ‘Newton over Hodge’ result for finite characters on curves. Let X be a smooth proper curve over a finite field
$\mathbb {F}_q$
of characteristic
$p\geq 3$
and let
$V \subset X$
be an affine curve. Consider a nontrivial finite character
$\rho :\pi _1^{et}(V) \to \mathbb {C}^{\times }$
. In this article, we prove a lower bound on the Newton polygon of the L-function
$L(\rho ,s)$
. The estimate depends on monodromy invariants of
$\rho $
: the Swan conductor and the local exponents. Under certain nondegeneracy assumptions, this lower bound agrees with the irregular Hodge filtration introduced by Deligne. In particular, our result further demonstrates Deligne’s prediction that the irregular Hodge filtration would force p-adic bounds on L-functions. As a corollary, we obtain estimates on the Newton polygon of a curve with a cyclic action in terms of monodromy invariants.
Given a perfect valuation ring $R$ of characteristic $p$ that is complete with respect to a rank-1 nondiscrete valuation, we show that the ring $\mathbb{A}_{\inf }$ of Witt vectors of $R$ has infinite Krull dimension.
For a ∇-module M over the ring K[[x]]0 of bounded functions over a p-adic local field K we define the notion of special and generic log-growth filtrations on the base of the power series development of the solutions and horizontal sections. Moreover, if M also admits a Frobenius structure then it is endowed with generic and special Frobenius slope filtrations. We will show that in the case of M a ϕ–∇-module of rank 2, the Frobenius polygon for M and the log-growth polygon for its dual, Mv, coincide, this is proved by showing explicit relationships between the filtrations. This will lead us to formulate some conjectural links between the behaviours of the filtrations arising from the log-growth and Frobenius structures of the differential module. This coincidence between the two polygons was only known for the hypergeometric cases by Dwork.
This is a study of the asymptotic behaviour of solutions of p-adic linear differential equations near the boundary of their convergence disks. We prove Dwork’s conjecture on the logarithmic growth of solutions in generic versus special disks.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.