This paper develops a controller for position tracking of a new ball wheel drive mechanism for a robust omnidirectional wheeled mobile platform, an adaptive controller with physical parameter estimation. This platform, integrated with a manipulator, is designed for use in highway maintenance and construction, which is a generally unstructured and congested environment. The proposed ball wheel mechanism can move in all directions on the plane, instantaneously and isotropically. Reconfiguration of the redundant drive system of the ball wheel mechanism is accomplished by altering the contact pressure between the drive wheels and the sphere based on platform heading direction. The system redundancy is resolved through a Weighted Optimal Torque Distribution method allowing for smooth reconfiguration. Finally, experimental and simulation results demonstrate the effectiveness of the approach.