Previous papers have established sample-path versions of relations between marginal time-stationary and event-stationary (Palm) state probabilities for a process with an imbedded point process. This paper extends the use of sample-path analysis to provide relations between frequencies for arbitrary (measurable) sets in function space, rather than just marginal (one-dimensional) frequencies. We define sample-path analogues of the time-stationary and event-stationary (Palm) probability measures for a process with an imbedded point process, and then derive sample-path versions of the Palm transformation and inversion formulas.