This paper presents a comprehensive strategy to improve the locomotion performance of humanoid robots on various slippery floors. The strategy involves the implementation and adaptation of a divergent component of motion (DCM) based control architecture for the humanoid NAO, and the introduction of an embedded yaw controller (EYC), which is based on a proportional-integral-derivative (PID) control algorithm. The EYC is designed not only to address the slip behavior of the robot on low-friction floors but also to tackle the issue of non-straight walking patterns that we observed in this humanoid, even on non-slippery floors. To fine-tune the PID gains for the EYC, a systematic trial-and-error approach is employed. We iteratively adjusted the P (Proportional), I (Integral), and D (Derivative) parameters while keeping the others fixed. This process allowed us to optimize the PID controller’s response to different walking conditions and floor types. A series of locomotion experiments are conducted in a simulated environment, where the humanoid step frequency and PID gains are varied for each type of floor. The effectiveness of the strategy is evaluated using metrics such as robot stability, energy consumption, and task duration. The results of the study demonstrate that the proposed approach significantly improves humanoid locomotion on different slippery floors, by enhancing stability and reducing energy consumption. The study has practical implications for designing more versatile and effective solutions for humanoid locomotion on challenging surfaces and highlights the adaptability of the existing controller for different humanoid robots.