Points start to form on an ‘uncovered' unit interval according to a Poisson process with parameter λ. From newly formed points a covering region grows in both directions at velocity v, while new points continue to form on uncovered parts of the interval. Eventually the whole interval will be covered. Let N ≧ 1 denote the total number of points formed. We derive integral expressions for E(N) and Var(N) and give precise asymptotic expressions for these moments as ρ = λ/v →∞. Asymptotic normality of N is also established.