We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We study large-deviation probabilities of Telecom processes appearing as limits in a critical regime of the infinite-source Poisson model elaborated by I. Kaj and M. Taqqu. We examine three different regimes of large deviations (LD) depending on the deviation level. A Telecom process
$(Y_t)_{t \ge 0}$
scales as
$t^{1/\gamma}$
, where t denotes time and
$\gamma\in(1,2)$
is the key parameter of Y. We must distinguish moderate LD
${\mathbb P}(Y_t\ge y_t)$
with
$t^{1/\gamma} \ll y_t \ll t$
, intermediate LD with
$ y_t \approx t$
, and ultralarge LD with
$ y_t \gg t$
. The results we obtain essentially depend on another parameter of Y, namely the resource distribution. We solve completely the cases of moderate and intermediate LD (the latter being the most technical one), whereas the ultralarge deviation asymptotics is found for the case of regularly varying distribution tails. In all the cases considered, the large-deviation level is essentially reached by the minimal necessary number of ‘service processes’.
Consider the strong subordination of a multivariate Lévy process with a multivariate subordinator. If the subordinate is a stack of independent Lévy processes and the components of the subordinator are indistinguishable within each stack, then strong subordination produces a Lévy process; otherwise it may not. Weak subordination was introduced to extend strong subordination, always producing a Lévy process even when strong subordination does not. Here we prove that strong and weak subordination are equal in law under the aforementioned condition. In addition, we prove that if strong subordination is a Lévy process then it is necessarily equal in law to weak subordination in two cases: firstly when the subordinator is deterministic, and secondly when it is pure-jump with finite activity.
We discuss the joint temporal and contemporaneous aggregation of N independent copies of random-coefficient AR(1) processes driven by independent and identically distributed innovations in the domain of normal attraction of an
$\alpha$
-stable distribution,
$0< \alpha \le 2$
, as both N and the time scale n tend to infinity, possibly at different rates. Assuming that the tail distribution function of the random autoregressive coefficient regularly varies at the unit root with exponent
$\beta > 0$
, we show that, for
$\beta < \max (\alpha, 1)$
, the joint aggregate displays a variety of stable and non-stable limit behaviors with stability index depending on
$\alpha$
,
$\beta$
and the mutual increase rate of N and n. The paper extends the results of Pilipauskaitė and Surgailis (2014) from
$\alpha =2$
to
$0 < \alpha < 2$
.
Shot-noise processes are used in applied probability to model a variety of physical systems in, for example, teletraffic theory, insurance and risk theory, and in the engineering sciences. In this paper we prove a large deviation principle for the sample-paths of a general class of multidimensional state-dependent Poisson shot-noise processes. The result covers previously known large deviation results for one-dimensional state-independent shot-noise processes with light tails. We use the weak convergence approach to large deviations, which reduces the proof to establishing the appropriate convergence of certain controlled versions of the original processes together with relevant results on existence and uniqueness.
The infinite source Poisson arrival model with heavy-tailed workload distributions has attracted much attention, especially in the modeling of data packet traffic in communication networks. In particular, it is well known that under suitable assumptions on the source arrival rate, the centered and scaled cumulative workload input process for the underlying processing system can be approximated by fractional Brownian motion. In many applications one is interested in the stabilization of the work inflow to the system by modifying the net input rate, using an appropriate admission control policy. In this paper we study a natural family of admission control policies which keep the associated scaled cumulative workload input asymptotically close to a prespecified linear trajectory, uniformly over time. Under such admission control policies and with natural assumptions on arrival distributions, suitably scaled and centered cumulative workload input processes are shown to converge weakly in the path space to the solution of a d-dimensional stochastic differential equation driven by a Gaussian process. It is shown that the admission control policy achieves moment stabilization in that the second moment of the solution to the stochastic differential equation (averaged over the d-stations) is bounded uniformly for all times. In one special case of control policies, as time approaches ∞, we obtain a fractional version of a stationary Ornstein-Uhlenbeck process that is driven by fractional Brownian motion with Hurst parameter H > ½.
In this paper we study sums of micropulses that generate different kinds of processes. Fractional Brownian motion and bifractional Brownian motion are obtained as limit processes. Moreover, we not only prove the convergence of finite-dimensional laws but also, in some cases, convergence in distribution in the space of right-continuous functions with left limits. Finally, we obtain generalizations with multidimensional indices.
Using key tools such as Itô's formula for general semimartingales, Kunita's moment estimates for Lévy-type stochastic integrals, and the exponential martingale inequality, we find conditions under which the solutions to the stochastic differential equations (SDEs) driven by Lévy noise are stable in probability, almost surely and moment exponentially stable.
We give a functional central limit theorem for spatial birth and death processes based on the representation of such processes as solutions of stochastic equations. For any bounded and integrable function in Euclidean space, we define a family of processes which is obtained by integrals of this function with respect to the centered and scaled spatial birth and death process with constant death rate. We prove that this family converges weakly to a Gaussian process as the scale parameter goes to infinity. We do not need the birth rates to have a finite range of interaction. Instead, we require that the birth rates have a range of interaction that decays polynomially. In order to show the convergence of the finite-dimensional distributions of the above processes, we extend Penrose's multivariate spatial central limit theorem. An example of the asymptotic normalities of the time-invariance estimators for the birth rates of spatial point processes is given.
Empirical studies of data traffic in high-speed networks suggest that network traffic exhibits self-similarity and long-range dependence. Cumulative network traffic has been modeled using the so-called ON/OFF model. It was shown that cumulative network traffic can be approximated by either fractional Brownian motion or stable Lévy motion, depending on how many sources are active in the model. In this paper we consider exceedances of a high threshold by the sequence of lengths of ON-periods. If the cumulative network traffic converges to stable Lévy motion, the number of exceedances converges to a Poisson limit. The same holds in the fractional Brownian motion case, provided a very high threshold is used. Finally, we show that the number of exceedances obeys the central limit theorem.
In this paper, we consider several stochastic models arising from environmental problems. First, we study pollution in a domain where undesired chemicals are deposited at random times and locations according to Poisson streams. The chemical concentration can be modeled by a linear stochastic partial differential equation (SPDE) which is solved by applying a general result. Various properties, especially the limit behavior of the pollution process, are discussed. Secondly, we consider the pollution problem when a tolerance level is imposed. The chemical concentration can still be modeled by a SPDE which is no longer linear. Its properties are investigated in this paper. When the leakage rate is positive, it is shown that the pollution process has an equilibrium state given by the deterministic model treated in [2]. Finally, the linear filtering problem is considered based on the data of several observation stations.
For linear-cost-adjusted and geometric-discounted infinite sequences of i.i.d. random variables, point process convergence results are proved as the cost or discounting effect diminishes. These process convergence results are combined with continuous-mapping principles to obtain results on joint convergence of suprema and threshold-stopped random variables, and last-exit times and locations. Applications are made to several classical optimal stopping problems in these settings.
We present some non-stationary infinite-server queueing systems with stationary Poisson departure processes. In Foley (1982), it was shown that the departure process from the Mt/Gt/∞ queue was a Poisson process, possibly non-stationary. The Mt/Gt/∞ queue is an infinite-server queue with a stationary or non-stationary Poisson arrival process and a general server in which the service time of a customer may depend upon the customer's arrival time. Mirasol (1963) pointed out that the departure process from the M/G/∞ queue is a stationary Poisson process. The question arose whether there are any other Mt/Gt/∞ queueing systems with stationary Poisson departure processes. For example, if the arrival rate is periodic, is it possible to select the service-time distribution functions to fluctuate in order to compensate for the fluctuations of the arrival rate? In this situation and in more general situations, it is possible to select the server such that the system yields a stationary Poisson departure process.
Using the isomorphism between convex subsets of Euclidean space and continuous functions on the unit sphere we describe the probability measure of the convex hull of a random sample. When the sample is spherically symmetric the asymptotic behavior of this measure is determined. There are three distinct limit measures, each corresponding to one of the classical extreme-value distributions. Several properties of each limit are determined.
The distribution of the convex hull of a random sample of d-dimensional variables is described by embedding the collection of convex sets into the space of continuous functions on the unit sphere. Weak convergence of the normalized convex hull of a circular Gaussian sample to a process with extreme-value marginal distributions is demonstrated. The proof shows that an underlying sequence of point processes converges to a Poisson point process and then applies the continuous mapping theorem. Several properties of the limit process are determined.
Necessary and sufficient conditions are given for a distribution function in ℝ2 to be max-infinitely divisible. The d.f. F is max i.d. if Ft is a d.f. for every t > 0. This property is essential in defining multivariate extremal processes and arises in an approach to the study of the range of an i.i.d. sample.
Let Tn be the time of occurrence of the nth flood peak in a hydrological system and Xn the amount by which the peak exceeds a base level. We assume that ((Tn, Xn)) is a Poisson random measure with mean measure μ(dx) K(x, dy). In this note we characterize two extreme value processes which are functionals of ((Tn, Xn)). The set-parameterized process {MA} defined by MA = sup {Xn:Tn ∈ A} is additive and we compute its one-dimensional distributions explicitly. The process (Mt), where Mt = sup{Xn: Tn ≦ t}, is a non-homogeneous strong Markov process. Our results extend but computationally simplify those of previous models.
Envision a one-dimensional system of infinitely many identical particles, in which initial particle positions constitute a Poisson random measure and the initial velocity of a particle depends only on its initial position. Given its initial conditions the system evolves deterministically, by means of perfectly elastic collisions. In this note we derive conditions for continuity of the probability laws of the system and of the particle paths, as functions of the parameters of the initial conditions. These results have the physical interpretation of stability theorems.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.