With human influences driving populations of apex predators into decline, more information is required on how factors affect species at national and global scales. However, camera-trap studies are seldom executed at a broad spatial scale. We demonstrate how uniting fine-scale studies and utilizing camera-trap data of non-target species is an effective approach for broadscale assessments through a case study of the brown hyaena Parahyaena brunnea. We collated camera-trap data from 25 protected and unprotected sites across South Africa into the largest detection/non-detection dataset collected on the brown hyaena, and investigated the influence of biological and anthropogenic factors on brown hyaena occupancy. Spatial autocorrelation had a significant effect on the data, and was corrected using a Bayesian Gibbs sampler. We show that brown hyaena occupancy is driven by specific co-occurring apex predator species and human disturbance. The relative abundance of spotted hyaenas Crocuta crocuta and people on foot had a negative effect on brown hyaena occupancy, whereas the relative abundance of leopards Panthera pardus and vehicles had a positive influence. We estimated that brown hyaenas occur across 66% of the surveyed camera-trap station sites. Occupancy varied geographically, with lower estimates in eastern and southern South Africa. Our findings suggest that brown hyaena conservation is dependent upon a multi-species approach focussed on implementing conservation policies that better facilitate coexistence between people and hyaenas. We also validate the conservation value of pooling fine-scale datasets and utilizing bycatch data to examine species trends at broad spatial scales.