The study presents an adaptive robust control method for the Pendubot subjects to matched and mismatched uncertainty. First, the control task is formatted as a reduced-dimension equality constraint of the system states. To handle the matched and mismatched uncertainties, an orthogonal decomposition method is employed to make the mismatched part disappear after decomposition. Based on the above, an adaptive robust control law based on constraint-following is devised. By the Lyapunov approach, it is rigorously proven that the proposed approach ensures the uniform boundedness and uniform ultimate boundedness of the closed-loop control system and thus renders approximate constraint-following, regardless of uncertainty. Simulation and experimental results are provided and discussed, demonstrating the good performance of the proposed approach.