Controlled fusion energy from burning hydrogen with boron-11 is of interest because no neutrons are produced. Following the scheme of ignition by spherical irradiation by laser or particle beams, one has to deal with exorbitant conditions of densities and input energies. A new approach following the scheme of block ignition with laser pulses of picosecond (ps) duration and more than petawatt (PW) power led to the possibility of plane geometry irradiation of the fuel using the anomalous effect of block ignition for deuterium tritium (DT) based on updated conditions for the initial computations. We present the extension for H-11B resulting in a very less dramatic difference to DT than in the case of spherical pellet geometry. Ignition thresholds may be only about one order of magnitude higher and the needed temperatures of about 50 keV are no problem for the skin layer acceleration by nonlinear forces (SLANF) for the block generation.