We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Spinors are defined, their basic properties and relation to tensors are derived. The spinor image of the Weyl tensor is derived and it is shown that it is symmetric in all four of its spinor indices. From this, the classification of Weyl tensors equivalent to Petrov’s (by the Penrose method) is derived. The equivalence of these two approaches is proved. The third (Debever’s) method of classification of Weyl tensors is derived, and its equivalence to those of Petrov and Penrose is demonstrated. Extended hints for verifying the calculations (moved to the exercises section) are provided.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.