Reactive Ion Etching (RIE) and Photo-Assisted RIE (PA-RIE) induced damage in GaN using simple Schottky structures and a BCl3/Cl2/N2gas mixture have been investigated. Schottky diode I-V characteristics following different RF powers and exposure times show significant changes caused by damage. This damage results in a reduction of the reverse breakdown voltage VB in n-type GaN and an increase in VB for p-type GaN. Our preliminary data on the PA-RIE process points to much reduced damage levels compared to conventional RIE. This result may be due to a change in surface chemistry or to a photo-enhanced diffusion of defects into the GaN layer, leaving a cleaner near-surface region.