We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
A high-frequency surface plasma wave (SPW) excited over metallic surface irradiated by a laser beam, can undergo stimulated Compton scattering if phase velocity of daughter plasma wave is equal to the Fermi velocity for metal. The pump SPW ${\rm (}{{\rm \omega} _0},{\vec k_{0{\rm z}}})$ parametrically excites a quasi-electrostatic plasma wave ${\rm (\omega}, {\vec k_{\rm z}})$ and a backscattered sideband SPW ${\rm (}{{\rm \omega} _1},{\vec k_{1{\rm z}}})$ at resonance ω0 = ω − ω1 and ${\vec k_{0{\rm z}}} = {\vec k_{\rm z}} - {\vec k_{1{\rm z}}}$. The growth rate of Compton process increases with the frequency of incident laser and turns out to be 5.425 × 1010 rad/s at laser frequency ω0 = 0.7595 × 1015 rad/s for incident laser amplitude A0L = 11 × 1011 V/m, laser spot size b = 1.38 × 10−5 m, and free electron density of metal n0 = 5.85 × 1028/m3. The excitation of highly damped quasi-electrostatic plasma wave in this parametric process provide a better nonlinear option for surface heating as compared with direct laser heating. The process can also be used for diagnostics purposes.
By analytical modeling and numerical simulation, we show that
surface modes in moderately overdense plasmas may be excited
parametrically by an intense, ultrashort laser pulse. This process
has a feedback effect on fast electron generation and may seed
a fast distortion of plasma “moving mirrors.”
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.