Changes in the pattern of haemolymph polypeptides were studied to map the innate immune response of the malaria vector Anopheles stephensi (Diptera: Culicidae) to infection by the parasite Plasmodium yoelii yoelii. In addition, changes in the ontogenetic pattern due to glucose feeding, age, sex and gonotrophic cycle-related proteins were analysed. Six polypeptides were induced and 22 polypeptides disappeared due to glucose feeding during various stages of the mosquito's adult life. Five polypeptide patterns (91, 100, 108, 133 & 145 KDa) were found exclusively in female haemolymph. The changes in these polypeptide patterns have been correlated with sexual dimorphism in their feeding behaviour.
In total, 18 polypeptides were induced in the haemolymph of parasitised mosquitoes during different stages of development. Most of the polypeptides were induced in the early stages of infection, i.e. immediately after a bloodmeal. One polypeptide (25 KDa) was induced in all the stages. The expression of two polypeptides (32.5 and 70 KDa) on day 9 and one polypeptide (42 KDa) on day 15 was also enhanced following parasitism. The different induced proteins may help mosquitoes of different ages cope with parasite infection. The parasite evidently elicits immune responses in multiple tissues of the mosquito, including two epithelia which the parasite must traverse to complete its development. The mechanism of these responses and their significance in malaria transmission are discussed.