We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We give a mini-review of representations of the Poincaré group, emphasizing the role of irreducible unitary representations in identifying ‘elementary particles’. Young tableaux are used to identify irreducible representations of the little group and thus the particle content of the excitation spectrum of a string.
It is an extremely well-established experimental fact that the speed of light is the same for all “inertial observers” (those who do not undergo accelerations). The analysis of the consequences of this remarkable fact has forced a complete revision of Newton’s ideas: Space and time are not different entities but are different aspects of one single entity, space-time. Different inertial observers may use different coordinates to describe the points of space-time, but these coordinates must be related in a way that preserves the speed of light. The changes of coordinates between observers form a group, the Lorentz group. To a large extent the mathematics of Special Relativity reduce to the study of this group. Physics appears to respect causality, a strong constraint in the presence of a finite speed of light. We introduce the Poincaré group, related to the Lorentz group. We develop Wigner’s idea that to each elementary particle is associated an irreducible unitary representation of the Poincaré group and we describe the representation corresponding to a spinless massive particle, explaining also how the physicists view these matters.
Quantum field theory (QFT) is one of the great achievements of physics, of profound interest to mathematicians. Most pedagogical texts on QFT are geared toward budding professional physicists, however, whereas mathematical accounts are abstract and difficult to relate to the physics. This book bridges the gap. While the treatment is rigorous whenever possible, the accent is not on formality but on explaining what the physicists do and why, using precise mathematical language. In particular, it covers in detail the mysterious procedure of renormalization. Written for readers with a mathematical background but no previous knowledge of physics and largely self-contained, it presents both basic physical ideas from special relativity and quantum mechanics and advanced mathematical concepts in complete detail. It will be of interest to mathematicians wanting to learn about QFT and, with nearly 300 exercises, also to physics students seeking greater rigor than they typically find in their courses. Erratum for the book can be found at michel.talagrand.net/erratum.pdf.
Given an isolated system of either free or interacting particles and the associated realization of the ten conserved Poincaré generators its total conserved time-like 4-momentum defines its inertial rest-frame as the 3+1 splitting whose space-like 3-spaces (named Wigner 3-spaces) are orthogonal to it and whose inertial observer is the Fokker–Pryce 4-center of inertia. There is a discussion of the problem of the relativistic center of mass based on the fact that the 4-center functions “only” of the Poincaré generators of the isolated system are the following three non-local quantities: the non-canonical covariant Fokker–Pryce 4-center of inertia, the canonical non-covariant Newton–Wigner 4-center of mass and the non-canonical non-covariant Mőller 4-center of energy. At the Hamiltonian level one is able to express the canonical world-lines of the particles and their momenta in terms of the Jacobi variables of the external Newton–Wigner center of mass (a non-local non-covariant non-measurable quantity) and of Wigner-covariant relative 3-coordinates and 3-momenta inside the Wigner 3-spaces. This solves the problem of the elimination of relative times in relativistic bound states and to formulate a consistent Wigner-covariant relativistic quantum mechanics of point particles. The non-relativistic limit gives the Hamilton–Jacobi description of the system after the separation of Newtonian center of mass. Finally there is the definition of the non-inertial rest-frames whose 3-spaces are orthogonal to the total 4-momentum of the isolated system at spatial infinity.
Interpreting general relativity relies on a proper description of non-inertial frames and Dirac observables. This book describes global non-inertial frames in special and general relativity. The first part covers special relativity and Minkowski space time, before covering general relativity, globally hyperbolic Einstein space-time, and the application of the 3+1 splitting method to general relativity. The author uses a Hamiltonian description and the Dirac–Bergmann theory of constraints to show that the transition between one non-inertial frame and another is a gauge transformation, extra variables describing the frame are gauge variables, and the measureable matter quantities are gauge invariant Dirac observables. Point particles, fluids and fields are also discussed, including how to treat the problems of relative times in the description of relativistic bound states, and the problem of relativistic centre of mass. Providing a detailed description of mathematical methods, the book is perfect for theoretical physicists, researchers and students working in special and general relativity.
We find the Lie algebra of the Lorentz group and then extend it to the Poincaré group, the group of symmetries of flat space. We then point out that, as SU(2) is the universal cover of SO(3), for the Lorentz group SO(3,1) the universal cover is SL(2,C).We then use Wigner's method, using the little group in four dimensions, to find massive and massless representations of the Lorentz and Poincaré groups. We thus find various possible fields, corresponding to these representations. We end by explaining how SL(2,C) is the universal cover of SO(3,1).
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.