We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Let $M$ be a nondoubling parabolic manifold with ends. First, this paper investigates the boundedness of the maximal function associated with the heat semigroup ${\mathcal{M}}_{\unicode[STIX]{x1D6E5}}f(x):=\sup _{t>0}|e^{-t\unicode[STIX]{x1D6E5}}f(x)|$ where $\unicode[STIX]{x1D6E5}$ is the Laplace–Beltrami operator acting on $M$. Then, by combining the subordination formula with the previous result, we obtain the weak type $(1,1)$ and $L^{p}$ boundedness of the maximal function ${\mathcal{M}}_{\sqrt{L}}^{k}f(x):=\sup _{t>0}|(t\sqrt{L})^{k}e^{-t\sqrt{L}}f(x)|$ on $L^{p}(M)$ for $1<p\leq \infty$ where $k$ is a nonnegative integer and $L$ is a nonnegative self-adjoint operator satisfying a suitable heat kernel upper bound. An interesting thing about the results is the lack of both doubling condition of $M$ and the smoothness of the operators’ kernels.
Let P(r, θ) be the two-dimensional Poisson kernel in the unit disc D. It is proved that there exists a special sequence {ak} of points of D which is non-tangentially dense for ∂D and such that any function on ∂D can be expanded in series of P(|ak|, (·)–arg ak) with coefficients depending continuously on f in various classes of functions. The result is used to solve a Cauchy-type problem for Δu = μ, where μ is a measure supported on {ak}.
Direct and elementary derivation of the classical Poisson kernel for the ball in n = 2 or n = 3 dimensions starting with the usual expression involving the brownian motion bω, the stopping time T on the boundary, and Ex the conditional expectation on paths starting at x.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.