We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
For a Brownian bridge from 0 to y, we prove that the mean of the first exit time from the interval
$\left( -h,h \right),h>0$
, behaves as
${\mathrm{O}}(h^2)$
when
$h
\downarrow 0$
. Similar behaviour is also seen to hold for the three-dimensional Bessel bridge. For the Brownian bridge and three-dimensional Bessel bridge, this mean of the first exit time has a puzzling representation in terms of the Kolmogorov distribution. The result regarding the Brownian bridge is applied to provide a detailed proof of an estimate needed by Walsh to determine the convergence of the binomial tree scheme for European options.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.