For seed banks showing seasonal changes in their dormancy level, the possibility of predicting temporal patterns of emergence depends on establishing a robust relationship between temperature and the rate of dormancy loss and induction. However, although the effect of temperature on dormancy loss has been extensively studied, less work has been advocated to the quantification of temperature effects on dormancy induction. In the present work, we quantified temperature regulation of dormancy induction in Polygonum aviculare seeds using the hydrotime model. To study induction into secondary dormancy, seeds previously released from primary dormancy through stratification at 5°C were stored at dormancy-inductive temperatures of 10, 15, 20 and 25°C for different periods. During storage, seeds were germinated at different temperatures and water potentials, and hydrotime model parameters were derived. Changes in hydrotime model parameters (mean base water potential for germination and its standard deviation, and the hydrotime required for germination) during dormancy induction were described by adjusting exponential equations. Obtained results indicated a minimum temperature for dormancy induction of 8.7°C and the existence of a bi-linear relationship between rate of induction into secondary dormancy and storage temperature, in which storage temperatures around 25°C showed a higher dormancy induction rate than those below 20°C. Developed model equations were then used to predict changes in germination behaviour during dormancy induction at different temperatures, showing a good agreement between simulated and observed values.