The paper presents a geometric method for collision-free manipulator path planning in 3D Euclidean space with polyhedral obstacles. It ensures that none of the links nor the manipulator tip collide with the objects. The method is computationally very cheap and it does not require intensive off-line preprocessing. Hence, it is real-time applicable if the information about obstacles positions and shapes is obtained from a higher control level. The trajectories generated lie within the reachable workspace. The method is implemented on a VAX 11/750 computer and the simulation results are included.