We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
In an appendix to an earlier paper \cite{BDS-sewing} we showed how to construct tunnels of positive scalar curvature and of arbitrarily small length and volume connecting points in a three dimensional manifold of constant positive sectional curvature. Here we generalize the construction to arbitrary dimensions and require only positivity of the scalar curvature.
Applications of assembly maps to the Kadison-Kaplansky conjecture on the existence of idempotents in group algebras, to the existence and study of positive scalar curvature metrics, and to the Novikov conjecture in manifold topology.Historical motivation and some overview of the literature.
Let $M$ be a topological spherical space form, i.e., a smooth manifold whose universal cover is a homotopy sphere. We determine the number of path components of the space and moduli space of Riemannian metrics with positive scalar curvature on $M$ if the dimension of $M$ is at least 5 and $M$ is not simply-connected.
We extend the Atiyah, Patodi, and Singer index theorem for first-order differential operators from the context of manifolds with cylindrical ends to manifolds with periodic ends. This theorem provides a natural complement to Taubes’ Fredholm theory for general end-periodic operators. Our index theorem is expressed in terms of a new periodic eta-invariant that equals the Atiyah–Patodi–Singer eta-invariant in the cylindrical setting. We apply this periodic eta-invariant to the study of moduli spaces of Riemannian metrics of positive scalar curvature.
We decompose θ(M), the twisted index obstruction to a positive scalar curvature metric for closed oriented manifolds with spin universal cover, into a pairing of a twisted K-homology with a twisted K-theory class and prove that θ(M) does not vanish if M is a closed orientable enlargeable manifold with spin universal cover.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.