We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Youth with attention deficit hyperactivity disorder (ADHD) often show reduced post-error slowing (PES) compared to typically developing controls. This finding has been interpreted as evidence that children with ADHD have error recognition and adaptive control impairments. However, several studies report mixed results regarding PES differences in ADHD, and among healthy controls, there is considerable debate about the cognitive-behavioral origin of PES.
Methods:
We tested competing hypotheses aimed at clarifying whether reduced PES in children with ADHD is due to impaired error detection, deficits in adaptive control, and/or attention orienting to novelty. Children aged 7–11 years with a diagnosis of ADHD (n = 74) and controls (n = 30) completed four laboratory-based computer tasks with variable cognitive loads and error types.
Results:
ADHD diagnosis was associated with shorter PES only on a task with high cognitive load and low error-cuing, consistent with impaired error recognition. In contrast, there was no evidence of impaired adaptive control or heightened novelty orienting among children with ADHD.
Conclusions:
The cognitive-behavioral origin of PES is multifactorial, but reduced PES among children with an ADHD diagnosis is due to impaired error recognition during cognitively demanding tasks. Behavioral interventions that scaffold error recognition may facilitate improved performance among children with ADHD.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.