We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
In this paper we examine solutions in the Gaussian integers to the Diophantine equation $ax^{4}+by^{4}=cz^{2}$ for different choices of $a,b$ and $c$. Elliptic curve methods are used to show that these equations have a finite number of solutions or have no solution.
A problem posed in the early eighteenth century asks for right-angled triangles, each of whose sides exceeds double the area by a perfect square. We summarize known results and find such triangles with the smallest possible standard generators.
Let and let us consider a del Pezzo surface of degree one given by the equation . In this paper we prove that if the set of rational points on the curve Ea,b : Y2 = X3 + 135(2a−15)X−1350(5a + 2b − 26) is infinite then the set of rational points on the surface ϵf is dense in the Zariski topology.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.