We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
This paper concerns the problem of algebraic differential independence of the gamma function and ${\mathcal{L}}$-functions in the extended Selberg class. We prove that the two kinds of functions cannot satisfy a class of algebraic differential equations with functional coefficients that are linked to the zeros of the ${\mathcal{L}}$-function in a domain $D:=\{z:0<\text{Re}\,z<\unicode[STIX]{x1D70E}_{0}\}$ for a positive constant $\unicode[STIX]{x1D70E}_{0}$.
We obtain uniqueness theorems for L-functions in the extended Selberg class when the functions share values in a finite set and share values weighted by multiplicities.
We study quantum deformations of Catalan’s constant, Mahler’s measure and the double sine function. We establish quantum deformations of basic relations between these three objects.
We study algebraicity and transcendency of certain basic special values of the double sine functions due to Hölder and Shintani by employing the zeta regularized product expressions.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.