A coassociative Lie algebra is a Lie algebra equipped with a coassociative coalgebra structure satisfying a compatibility condition. The enveloping algebra of a coassociative Lie algebra can be viewed as a coalgebraic deformation of the usual universal enveloping algebra of a Lie algebra. This new enveloping algebra provides interesting examples of non-commutative and non-cocommutative Hopf algebras and leads to the classification of connected Hopf algebras of Gelfand–Kirillov dimension four in Wang et al. (Trans. Amer. Math. Soc., to appear).