We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We consider the split common null point problem in Hilbert space. We introduce and study a shrinking projection method for finding a solution using the resolvent of a maximal monotone operator and prove a strong convergence theorem for the algorithm.
In this paper, we generalize monotone operators, their resolvents and the proximal point algorithm to complete CAT(0) spaces. We study some properties of monotone operators and their resolvents. We show that the sequence generated by the inexact proximal point algorithm $\unicode[STIX]{x1D6E5}$-converges to a zero of the monotone operator in complete CAT(0) spaces. A strong convergence (convergence in metric) result is also presented. Finally, we consider two important special cases of monotone operators and we prove that they satisfy the range condition (see Section 4 for the definition), which guarantees the existence of the sequence generated by the proximal point algorithm.
The most important open problem in monotone operator theory concerns the maximal monotonicity of the sum of two maximally monotone operators provided that the classical Rockafellar’s constraint qualification holds. In this paper, we establish the maximal monotonicity of $\def \xmlpi #1{}\def \mathsfbi #1{\boldsymbol {\mathsf {#1}}}\let \le =\leqslant \let \leq =\leqslant \let \ge =\geqslant \let \geq =\geqslant \def \Pr {\mathit {Pr}}\def \Fr {\mathit {Fr}}\def \Rey {\mathit {Re}}A+B$ provided that $A$ and $B$ are maximally monotone operators such that ${\rm star}({\rm dom}\ A)\cap {\rm int}\, {\rm dom}\, B\neq \varnothing $, and $A$ is of type (FPV). We show that when also ${\rm dom}\ A$ is convex, the sum operator $A+B$ is also of type (FPV). Our result generalizes and unifies several recent sum theorems.
In this paper, we construct a generalized degree theory of Browder-Petryshyn or Petryshyn type for a class of semilinear operator equations involving a Fredholm type mapping with infinite dimensional kernel.
Various properties of continuity for the class of lower semicontinuous convex functions are considered and dual characterizations are established. In particular, it is shown that the restriction of a lower semicontinuous convex function to its domain (respectively, domain of subdifferentiability) is continuous if and only if its subdifferential is strongly cyclically monotone (respectively, σ-cyclically monotone).
A generalized version of the Knaster-Kuratowski-Mazurkiewicz theorem is obtained and used to generalize Ky Fan's minimax principle. This result is applied to a variational inequality.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.