We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
To determine the impact of contaminant iron and geophagy on iron intake and status of persons living in developing countries.
Design
Literature for review was identified by searching Medline and Agricola, from appropriate other texts and from three reports from the Opportunities for Micronutrient Interventions (OMNI) Project of USAID.
Setting
The dietary intake of iron by people living in developing countries is generally high but iron deficiency remains prevalent. This apparent paradox is because the iron being consumed is predominantly in the non-haem form, which is poorly absorbed. Some of this non-haem iron is from contamination of food with iron from soil, dust and water; iron leaching into food during storage and cooking; contamination during food processing such as milling; and the practice of geophagy.
Results
Although the contribution of contaminant iron to overall iron intake is well documented, its absorption and thus its impact on iron status is not. To be available for absorption, contaminant iron must join the common non-haem pool, i.e. be exchangeable. The absorption of exchangeable contaminant iron is subject to the same interactions with other constituents in the diet as the non-haem iron that is intrinsic to food. The limited available evidence suggests wide variation in exchangeability. In situations where a significant fraction of the contaminating iron joins the pool, the impact on iron status could be substantial. Without a simple method for predicting exchangeability, the impact of contaminant iron on iron status in any particular situation is uncertain.
Conclusions
Interventions known to increase the absorption of iron intrinsic to foods will also increase absorption of any contaminant iron that has joined the common pool. Any positive effect of geophagy resulting from an increased intake of iron is highly unlikely, due to inhibiting constituents contained in soils and clays. The efficacy of approaches designed to increase the intake of contaminant iron remains encouraging but uncertain. An approach using multiple interventions will continue to be essential to reduce iron deficiency anaemia.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.