We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Quantum field theory (QFT) provides us with one and almost only suitable language (or mathematical tool) for describing not only the motion and interaction of particles but also their “annihilation” and “creation” out of a field considered a priori in a sophisticated way, whose view seems to be suited for describing dislocations, as a particle or a string embedded within a crystalline ordered field. This chapter concisely overviews the method of QFT, emphasizing distinction from the quantum mechanics, conventionally used for a single and/or many particle problems, and its equivalence to the statistical mechanics. The alternative formalism based on Feynman path integral and its imaginary time representation are reviewed, as the foundation for our use in Chapter 10.
This chapter intends to overview the field theory of multiscale plasticity (FTMP) in terms of the key concepts (keywords), the basic theories, and the fundamental hierarchical recognition (i.e., the identification of important scales). This will be followed by the introductions of several new features that the author himself has found and introduced afresh. Practically, the theory is applied via the crystal plasticity formalism-based framework as a tentative and convenient vehicle. So, the constitutive framework together with some detailed sets of modeling for the evolution equations therein is are also presented in the present chapter, i.e., strain gradient terms for the dislocation-density and the incompatibility tensors.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.