Machine reading comprehension (MRC) refers to the process of instructing machines to comprehend and respond to inquiries based on a provided text. There are two primary methodologies for achieving this: extracting answers directly from the text or predicting them. Extracting answers involves anticipating the specific segment of text containing the answer, pinpointed by its starting and ending indices within the paragraph. Despite the increasing interest in MRC, exploration within the framework of the Arabic language faces limitations due to various challenges. A significant impediment arises from the inadequacy of resources available for Arabic textual content, which impedes the development of effective models. Furthermore, the inherent intricacies of Arabic, manifesting in its diverse linguistic forms including classical, modern standard, and colloquial, present distinctive hurdles for tasks involving language comprehension. This paper proposes an enhanced version of the bidirectional attention flow (BIDAF) model for Arabic MRC, constructed upon the Arabic Span-Extraction-based Reading Comprehension Benchmark (ASER). ASER comprises 10,000 sets of questions, answers, and passages, partitioned into a training set constituting 90% of the data and a testing set making up the remaining 10%. By introducing a new input feature based on parts-of-speech (POS) word embeddings and replacing Bidirectional Long Short-Term Memory (bi-LSTM) with bidirectional gated recurrent unit, significant improvements were observed. Eight different POS word embeddings were generated using both Continuous Bag of Words (CBOW) and Skip-gram methods, with varying dimensionalities. Evaluation metrics, including exact match (EM) and F1-measure, were utilized to assess model performance, with emphasis on the latter for its accuracy. The proposed enhanced BIDAF model achieved a remarkable accuracy of 75.22% on the ASER dataset, demonstrating its efficacy in Arabic MRC tasks. Additionally, rigorous statistical evaluation using a two-tailed paired samples t-test further validated the findings, highlighting the significance of the proposed enhancements in advancing Arabic language processing capabilities.