The Reynolds-averaged Navier–Stokes (RANS) models depend on empirical constants to close the Reynolds stress terms. The empirical constants were obtained using experiments conducted at low Reynolds numbers several decades ago. In this paper, we revisit the turbulent viscosity parameter $C_\mu$, based on the stress–intensity ratio $c^2 = {|\overline {uw}|}/{k}$. Here, $\overline {|uw|}$ and $k$ are the absolute values of the Reynolds stress and turbulent kinetic energy, respectively. Through a priori comparisons, we find that the currently accepted value of $C_\mu = 0.09$ does not agree with the latest direct numerical simulation (DNS) and experimental datasets of wall-bounded turbulent planar flows. Therefore, a new value is suggested by averaging $c^2$ in the equilibrium region, where the production ($\mathcal {P}$) of $k$ is within 10 % of the dissipation rate ($\epsilon$), and consequently, $c^4 \approx C_\mu$. We evaluate flows up to friction Reynolds number $Re_\tau \approx 10\,000$ and find that with increasing $Re_\tau$, $C_\mu$ approaches a value of 0.06, which is almost 50 % lower than the prevalent value of 0.09. Finally, we perform an a priori test with the new (proposed) value of $C_\mu = 0.06$ to show that the estimated turbulent viscosity $\nu _T$ for wall-bounded flows is in much closer agreement with the exact (DNS) values than when $\nu _T$ is estimated using $C_\mu = 0.09$.