The equilibrium probability distribution over the set of absorbing states of a reducible Markov chain is specified a priori and it is required to obtain the constrained sub-space or feasible region for all possible initial probability distributions over the set of transient states. This is called the inverse problem. It is shown that a feasible region exists for the choice of equilibrium distribution. Two different cases are studied: Case I, where the number of transient states exceeds that of the absorbing states and Case II, the converse. The approach is via the use of generalised inverses and numerical examples are given.