Let X(1) ≦ X(2) ≦ ·· ·≦ X(N(t)) be the order statistics of the first N(t) elements from a sequence of independent identically distributed random variables, where {N(t); t ≧ 0} is a renewal counting process independent of the sequence of X's. We give a complete description of the asymptotic distribution of sums made from the top kt extreme values, for any sequence kt such that kt → ∞, kt/t → 0 as t → ∞. We discuss applications to reinsurance policies based on large claims.