Specific antisera, raised in rabbits, against somatostatin 1-14, somatostatin 1-28, the fragment 1-12 of somatostatin 1-28, and prosomatostatin 20-36 were used for immunohistochemistry and gel filtration of the rat retina.
With all antisera, immunoreactive perikarya could be located in the inner nuclear and ganglion cell layers. In the inner nuclear layer, amacrine cells with processes extending predominantly into the first sublayer of the inner plexiform layer were observed. Some processes extended also to the ganglion cell layer. In addition, somatostatin-immunoreactive interplexiform cells were present in the inner nuclear layer.
In the ganglion cell layer, perikarya were found located in the midperiphery and in the far periphery of the retina. The neurons located in the midperiphery of the retina possessed a round perikaryon from which processes could be followed going into the inner plexiform layer, where they dichotomized in the third and first sublayers. The perikarya in the far periphery of the retina near the ora serrata exhibited an ovoid-shaped cell body from which processes extended horizontally in a bipolar manner in the layer itself.
By use of an [35S]-labeled antisense oligonucleotide probe, in situ hybridization of the rat retina showed the presence of perikarya in the inner nuclear layer and ganglion cell layer containing mRNA encoding for prosomatostatin.
Gel filtration of the retinal extracts followed by radioimmunoassay showed the presence of somatostatin 1-14, the fragment 1-12 of somatostatin 1-28, and prosomatostatin 1-64. However, somatostatin 1-28 was not detected.
The results obtained in this study verify the presence of somatostatin 1-14 in the rat retina located in perikarya and processes in the inner nuclear and ganglion cell layers. The positive in-situ hybridization signals show that the intraneuronal somatostatin immunoreactivity is due to synthesis of the peptide and not uptake in the neurons. The presence of the somatostatin propeptide and fragments of this propeptide, in both intraretinal perikarya and fibers, indicate a posttranslational modification of this neuropeptide in the perikarya and the processes as well.