We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Selective compliance articulated robot arms (SCARA) robotic manipulators find wide use in industry. A nonlinear optimal control approach is proposed for the dynamic model of the 4-degrees of freedom (DOF) SCARA robotic manipulator. The dynamic model of the SCARA robot undergoes approximate linearization around a temporary operating point that is recomputed at each time-step of the control method. The linearization relies on Taylor series expansion and on the associated Jacobian matrices. For the linearized state-space model of the system, a stabilizing optimal (H-infinity) feedback controller is designed. To compute the controller’s feedback gains, an algebraic Riccati equation is repetitively solved at each iteration of the control algorithm. The stability properties of the control method are proven through Lyapunov analysis. The proposed control method is advantageous because: (i) unlike the popular computed torque method for robotic manipulators, it is characterized by optimality and is also applicable when the number of control inputs is not equal to the robot’s number of DOFs and (ii) it achieves fast and accurate tracking of reference setpoints under minimal energy consumption by the robot’s actuators. The nonlinear optimal controller for the 4-DOF SCARA robot is finally compared against a flatness-based controller implemented in successive loops.
The article proposes a nonlinear optimal control method for the model of the wheeled inverted pendulum (WIP). This is a difficult control and robotics problem due to the system’s strong nonlinearities and due to its underactuation. First, the dynamic model of the WIP undergoes approximate linearization around a temporary operating point which is recomputed at each time step of the control method. The linearization procedure makes use of Taylor series expansion and of the computation of the associated Jacobian matrices. For the linearized model of the wheeled pendulum, an optimal (H-infinity) feedback controller is developed. The controller’s gain is computed through the repetitive solution of an algebraic Riccati equation at each iteration of the control algorithm. The global asymptotic stability properties of the control method are proven through Lyapunov analysis. Finally, by using the H-infinity Kalman Filter as a robust state estimator, the implementation of a state estimation-based control scheme becomes also possible.
We extend the Kalman-Bucy filter to the case where both the system and observation processes are driven by finite dimensional Lévy processes, but whereas the process driving the system dynamics is square-integrable, that driving the observations is not; however it remains integrable. The main result is that the components of the observation noise that have infinite variance make no contribution to the filtering equations. The key technique used is approximation by processes having bounded jumps.
The Susceptible-Infected-Recovered (SIR) model for the spread of an infectious disease ina population of constant size is considered. In order to control the spread of infection,we propose the model with four bounded controls which describe vaccination of newborns,vaccination of the susceptible, treatment of infected, and indirect strategies aimed at areduction of the incidence rate (e. g. quarantine). The optimal control problem ofminimizing the total number of the infected individuals on a given time interval is statedand solved. The optimal solutions are obtained with the use of the Pontryagin MaximumPrinciple and investigated analytically. Numerical results are presented to illustrate theoptimal solutions.
In this article, we have introduced a Taylor collocation method, which is based on collocation method for solving fractional Riccati differential equation. The fractional derivatives are described in the Caputo sense. This method is based on first taking the truncated Taylor expansions of the solution function in the fractional Riccati differential equation and then substituting their matrix forms into the equation. Using collocation points, the systems of nonlinear algebraic equation is derived. We further solve the system of nonlinear algebraic equation using Maple 13 and thus obtain the coefficients of the generalized Taylor expansion. Illustrative examples are presented to demonstrate the effectiveness of the proposed method.
This paper is concerned with the stochastic linear quadratic optimal control problems (LQproblems, for short) for which the coefficients are allowed to be random and the costfunctionals are allowed to have negative weights on the square of control variables. Wepropose a new method, the equivalent cost functional method, to deal with the LQ problems.Comparing to the classical methods, the new method is simple, flexible and non-abstract.The new method can also be applied to deal with nonlinear optimization problems.
We are interested in the feedback stabilization of a fluid flow over a flat plate, around a stationary solution, in the presence of perturbations. More precisely, we want to stabilize the laminar-to-turbulent transition location of a fluid flow over a flat plate. For that we study the Algebraic Riccati Equation (A.R.E.) of a control problem in which the state equation is a doubly degenerate linear parabolic equation. Because of the degenerate character of the state equation, the classical existence results in the literature of solutions to algebraic Riccati equations do not apply to this class of problems. Here taking advantage of the fact that the semigroup of the state equation is exponentially stable and that the observation operator is a Hilbert-Schmidt operator, we are able to prove the existence and uniqueness of solution to the A.R.E. satisfied by the kernel of the operator which associates the 'optimal adjoint state' with the 'optimal state'. In part 2 [Buchot and Raymond, Appl. Math. Res. eXpress (2010) doi:10.1093/amrx/abp007], we study problems in which the feedback law is determined by the solution to the A.R.E. and another nonhomogeneous term satisfying an evolution equation involving nonhomogeneous perturbations of the state equation, and a nonhomogeneous term in the cost functional.
We study the local exponential stabilization of the 2D and 3DNavier-Stokes equations in a bounded domain, around a givensteady-state flow, by means of a boundary control. We look for acontrol so that the solution to the Navier-Stokes equations be astrong solution. In the 3D case, such solutions may exist if theDirichlet control satisfies a compatibility condition with theinitial condition. In order to determine a feedback law satisfyingsuch a compatibility condition, we consider an extended systemcoupling the Navier-Stokes equations with an equation satisfied bythe control on the boundary of the domain. We determine a linearfeedback law by solving a linear quadratic control problem for thelinearized extended system. We show that this feedback law alsostabilizes the nonlinear extended system.
One proves that the steady-state solutions to Navier–Stokes
equations with internal controllers are locally exponentially stabilizable by linear feedback controllers
provided by a LQ control problem associated with the linearized equation.
This paper considers the two-sex birth-death model {X(t), Y(t); t ≧ 0}; an explicit solution is obtained for its probability generating function. It is shown that moments of the process can be found directly from the Kolmogorov forward equations for the probabilities. An integral equation approach is also used to throw light on the structure of the process.