We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We present a JASMIN-based two-dimensional parallel implementation of an adaptive combined preconditioner for the solution of linear problems arising in the finite volume discretisation of one-group and multi-group radiation diffusion equations. We first propose the attribute of patch-correlation for cells of a two-dimensional monolayer piecewise rectangular structured grid without any suspensions based on the patch hierarchy of JASMIN, classify and reorder these cells via their attributes, and derive the conversion of cell-permutations. Using two cell-permutations, we then construct some parallel incomplete LU factorisation and substitution algorithms, to provide our parallel -GMRES solver with the help of the default BoomerAMG in the HYPRE library. Numerical results demonstrate that our proposed parallel incomplete LU preconditioner (ILU) is of higher efficiency than the counterpart in the Euclid library, and that the proposed parallel -GMRES solver is more robust and more efficient than the default BoomerAMG-GMRES solver.
The paper aims to develop an effective preconditioner and conduct the convergence analysis of the corresponding preconditioned GMRES for the solution of discrete problems originating from multi-group radiation diffusion equations. We firstly investigate the performances of the most widely used preconditioners (ILU(k) and AMG) and their combinations (Bco and Bco), and provide drawbacks on their feasibilities. Secondly, we reveal the underlying complementarity of ILU(k) and AMG by analyzing the features suitable for AMG using more detailed measurements on multiscale nature of matrices and the effect of ILU(k) on multiscale nature. Moreover, we present an adaptive combined preconditioner Bcoα involving an improved ILU(0) along with its convergence constraints. Numerical results demonstrate that Bcoα-GMRES holds the best robustness and efficiency. At last, we analyze the convergence of GMRES with combined preconditioning which not only provides a persuasive support for our proposed algorithms, but also updates the existing estimation theory on condition numbers of combined preconditioned systems.
We develop a Lions domain decomposition algorithm based on a cell functional
minimization scheme on non-matching multi-block grids for nonlinear radiation
diffusion equations, which are described by the coupled radiation diffusion
equations of electron, ion and photon temperatures. The
L2 orthogonal projection is applied in the Robin
transmission condition of non-matching surfaces. Numerical results show that the
algorithm keeps the optimal accuracy on the whole computational domain, is
robust enough on distorted meshes and curved surfaces, and the convergence rate
does not depend on Robin coefficients. It is a practical and attractive
algorithm in applying to the two-dimensional three-temperature energy equations
of Z-pinch implosion simulation.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.