We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Given a family of graphs $\mathcal{F}$ and an integer $r$, we say that a graph is $r$-Ramsey for $\mathcal{F}$ if any $r$-colouring of its edges admits a monochromatic copy of a graph from $\mathcal{F}$. The threshold for the classic Ramsey property, where $\mathcal{F}$ consists of one graph, in the binomial random graph was located in the celebrated work of Rödl and Ruciński.
In this paper, we offer a twofold generalisation to the Rödl–Ruciński theorem. First, we show that the list-colouring version of the property has the same threshold. Second, we extend this result to finite families $\mathcal{F}$, where the threshold statements might also diverge. This also confirms further special cases of the Kohayakawa–Kreuter conjecture. Along the way, we supply a short(-ish), self-contained proof of the $0$-statement of the Rödl–Ruciński theorem.
${\mathsf {CAC\ for\ trees}}$ is the statement asserting that any infinite subtree of $\mathbb {N}^{<\mathbb {N}}$ has an infinite path or an infinite antichain. In this paper, we study the computational strength of this theorem from a reverse mathematical viewpoint. We prove that ${\mathsf {CAC\ for\ trees}}$ is robust, that is, there exist several characterizations, some of which already appear in the literature, namely, the statement $\mathsf {SHER}$ introduced by Dorais et al. [8], and the statement $\mathsf {TAC}+\mathsf {B}\Sigma ^0_2$ where $\mathsf {TAC}$ is the tree antichain theorem introduced by Conidis [6]. We show that ${\mathsf {CAC\ for\ trees}}$ is computationally very weak, in that it admits probabilistic solutions.
In little more than a couple of years (1919–22) Keynes published three books that contrasted not only in style but in substance when they addressed a common theme: the nature of truth. Thus in the Economic Consequences he proposed a ‘ruthless truth-telling’ about what had happened in Paris. When his intimidating academic tome A Treatise on Probability was finally published in 1921, it offered a defence of objective perception. A few months later, A Revision of the Treaty suggested that truth in politics was little more than a prejudice that might be at odds with practical good. The first part of this chapter explores how Keynes sought to reconcile such views, especially under the criticism of the brilliant young Cambridge mathematician Frank Ramsey, whose insights continue to excite attention today. How far Keynes ‘yielded’ to Ramsey’s view is thus a central issue.
We investigate properties of the ineffability and the Ramsey operator, and a common generalization of those that was introduced by the second author, with respect to higher indescribability, as introduced by the first author. This extends earlier investigations on the ineffability operator by James Baumgartner, and on the Ramsey operator by Qi Feng, by Philip Welch et al., and by the first author.
In his Tractatus, Wittgenstein maintained that arithmetic consists of equations arrived at by the practice of calculating outcomes of operations
$\Omega ^{n}(\bar {\xi })$
defined with the help of numeral exponents. Since
$Num$
(x) and quantification over numbers seem ill-formed, Ramsey wrote that the approach is faced with “insuperable difficulties.” This paper takes Wittgenstein to have assumed that his audience would have an understanding of the implicit general rules governing his operations. By employing the Tractarian logicist interpretation that the N-operator
$N(\bar {\xi })$
and recursively defined arithmetic operators
$\Omega ^{n}(\bar {\xi })$
are not different in kind, we can address Ramsey’s problem. Moreover, we can take important steps toward better understanding how Wittgenstein might have imagined emulating proof by mathematical induction.
One of the central logical ideas in Wittgenstein’s Tractatus logico-philosophicus is the elimination of the identity sign in favor of the so-called “exclusive interpretation” of names and quantifiers requiring different names to refer to different objects and (roughly) different variables to take different values. In this paper, we examine a recent development of these ideas in papers by Kai Wehmeier. We diagnose two main problems of Wehmeier’s account, the first concerning the treatment of individual constants, the second concerning so-called “pseudo-propositions” (Scheinsätze) of classical logic such as
$a=a$
or
$a=b \wedge b=c \rightarrow a=c$
. We argue that overcoming these problems requires two fairly drastic departures from Wehmeier’s account: (1) Not every formula of classical first-order logic will be translatable into a single formula of Wittgenstein’s exclusive notation. Instead, there will often be a multiplicity of possible translations, revealing the original “inclusive” formulas to be ambiguous. (2) Certain formulas of first-order logic such as
$a=a$
will not be translatable into Wittgenstein’s notation at all, being thereby revealed as nonsensical pseudo-propositions which should be excluded from a “correct” conceptual notation. We provide translation procedures from inclusive quantifier-free logic into the exclusive notation that take these modifications into account and define a notion of logical equivalence suitable for assessing these translations.
We study large cardinal properties associated with Ramseyness in which homogeneous sets are demanded to satisfy various transfinite degrees of indescribability. Sharpe and Welch [25], and independently Bagaria [1], extended the notion of
$\Pi ^1_n$
-indescribability where
$n<\omega $
to that of
$\Pi ^1_\xi $
-indescribability where
$\xi \geq \omega $
. By iterating Feng’s Ramsey operator [12] on the various
$\Pi ^1_\xi $
-indescribability ideals, we obtain new large cardinal hierarchies and corresponding nonlinear increasing hierarchies of normal ideals. We provide a complete account of the containment relationships between the resulting ideals and show that the corresponding large cardinal properties yield a strict linear refinement of Feng’s original Ramsey hierarchy. We isolate Ramsey properties which provide strictly increasing hierarchies between Feng’s
$\Pi _\alpha $
-Ramsey and
$\Pi _{\alpha +1}$
-Ramsey cardinals for all odd
$\alpha <\omega $
and for all
$\omega \leq \alpha <\kappa $
. We also show that, given any ordinals
$\beta _0,\beta _1<\kappa $
the increasing chains of ideals obtained by iterating the Ramsey operator on the
$\Pi ^1_{\beta _0}$
-indescribability ideal and the
$\Pi ^1_{\beta _1}$
-indescribability ideal respectively, are eventually equal; moreover, we identify the least degree of Ramseyness at which this equality occurs. As an application of our results we show that one can characterize our new large cardinal notions and the corresponding ideals in terms of generic elementary embeddings; as a special case this yields generic embedding characterizations of
$\Pi ^1_\xi $
-indescribability and Ramseyness.
A major theme in arithmetic combinatorics is proving multiple recurrence results on semigroups (such as Szemerédi’s theorem) and this can often be done using methods of ergodic Ramsey theory. What usually lies at the heart of such proofs is that, for actions of semigroups, a certain kind of one recurrence (mixing along a filter) amplifies itself to multiple recurrence. This amplification is proved using a so-called van der Corput difference lemma for a suitable filter on the semigroup. Particular instances of this lemma (for concrete filters) have been proven before (by Furstenberg, Bergelson–McCutcheon, and others), with a somewhat different proof in each case. We define a notion of differentiation for subsets of semigroups and isolate the class of filters that respect this notion. The filters in this class (call them ∂-filters) include all those for which the van der Corput lemma was known, and our main result is a van der Corput lemma for ∂-filters, which thus generalizes all its previous instances. This is done via proving a Ramsey theorem for graphs on the semigroup with edges between the semigroup elements labeled by their ratios.