We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
This chapter is an overview, placing the body of work described in this book in perspective and describing its overarching structure, namely, how the three levels of structure are related: quantum field theory in curved spacetime established in the 1970s, semiclassical gravity developed in the 80s and stochastic gravity introduced in the 90s, a manifestation of the almost ubiquitous existence of a semiclassical and a stochastic regime in relation to quantum and classical in the description of physical systems. We describe the main physical issues in semiclassical and stochastic gravity, namely, backreaction and fluctuations, the mathematical tools used, and their applications to physical problems in early universe cosmology and black hole physics. In terms of connection to related disciplines, it is pointed out that the popular Newton–Schrödinger equation cherished in alternative quantum theories does not belong to semiclassical gravity, as it is not derivable from quantum field theory and general relativity. However, stochastic gravity is needed for quantum information issues involving gravity. These theories enter even in the low-energy, weak-gravity realm where laboratory experiments are carried out. We finish with a summary of the contents of each chapter and a guide to readers.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.