The electron emission yield γ induced by Ne2+ and O2+ impacting on a clean tungsten surface has been measured. The range of projectile energy is from 3 keV/u to 14 keV/u. The total electron yield gradually increases with the projectile velocity. It is found simultaneously that the total electron yield for O2+ is larger than the total electron yield for Ne2+, which is opposite to the results for higher projectile velocity. After considering the contribution from recoiling atoms to the energy distribution and electron emission yield, we find that recoiling atoms are of crucial importance in electron emission in our energy range. Thus, the unexpected results in our experiment can be explained successfully.