We have designed a robotic arm based on a double parallel four bar linkage to act as an assistant in minimally invasive surgical procedures. The remote center of motion (RCM) geometry of the robot arm kinematically constraints the robot motion such that minimal translation of an instrument held by the robot takes place at the entry portal into the patientApos;s body. In addition to the two rotational degrees of freedom comprising the RCM arm, distal translation and rotation are provided to manoeuver the instrument within the patient's body about an axis coincident with the RCM. An XYZ translation stage located proximal to the RCM arm provides positioning capability to establish the RCM location relative to the patients anatomy. An electronics set capable of controlling the system, as well as performing a series of safety checks to verify correct system operation, has also been designed and constructed. The robot is capable of precise positional motion. Repeatability in the ±10 micron range is demonstrated. The complete robotic system consists of the robot hardware and an IBM PC-AT based servo controller connected via a custom shared memory link to a host IBM PS/2. For laparoscopic applications, the PS/2 includes an image capture board to capture and process video camera images. A camera rotation stage has also been designed for this application. We have successfully demonstrated this system as an assistant in a laparoscopic cholecystectomy. Further applications for this system involving active tissue manipulation are under development.