We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Depression is characterized by a pattern of specific changes in the network organization of brain functioning.
Objectives
We researched a graph structure specificity in a depressive student sample by analyzing resting-state EEG. All possible combinations of graph metrics, frequency bands, and sensors/sources levels of networks were examined.
Methods
We recorded resting-state EEG in fourteen participants with high Beck Depression Inventory score (24.4 ± 9.7; 20.4 ± 1.5 y.o.; 14 females; 1 left-handed) and fourteen participants with a low score (6.8 ± 3.7; 21.3 ± 2.0 y.o.; 8 females; 1 left-handed). We applied weighted phase-lag index (wPLI) to construct functional networks at sensors and sources levels and computed characteristic path length (CPL), clustering coefficient (CC), index of modularity (Q), small-world index (SWI) in 4-8, 8-13, 13-30, and 4-30 Hz frequency bands. We used Mann-Whitney U-test (p < 0.05) to investigate between-group differences in the graph metrics.
Results
The depressive sample was characterized by increased CC and Q in the 4-30 Hz band networks and decreased CPL in the beta-band network (sensors-level for CPL and CC, and sources-level for Q).
Conclusions
Elevated CC and Q may relate to an increase of intramodular connectivity, and CPL reduction reflects the global connectivity increasing. We hypothesize that intramodular hyperconnectivity could explain the rise of global functional connectivity in participants with depressive symptoms. Funding: This research has been supported by the Interdisciplinary Scientific and Educational School of Lomonosov Moscow State University ‘Brain, Cognitive Systems, Artificial Intelligence’.
Recent studies mostly focus on the links between measures of alpha-band EEG networks and intelligence. However, associations between wide frequency range EEG networks and general intelligence level remain underresearched.
Objectives
In this study in a student sample we aimed to correlate the intelligence level and graph metrics of the sensors/sources-level networks constructed in different frequency EEG bands.
Methods
We recorded eyes-closed resting-state EEG in 28 healthy participants (21.4±2.1 y.o., 18 females, 1 left-handed). The Raven’s Standard Progressive Matrices Plus (‘SPM Plus’, 60 figures) was used as an intelligence measure. We constructed networks for all possible combinations of sensors/sources-level and 4-8, 8-13, 13-30, or 4-30 Hz frequency bands using Weighted Phase-Lag Index (wPLI), and calculated four graph metrics (Characteristic Path Length, Clustering Coefficient, Modularity, and Small World Index) for each network. Spearman correlation (with Holm-Sidak correction) was applied to characterize the relations between the SPM Plus scores and all the network metrics.
Results
SPM Plus scores varied from 35 to 57 (mean 45.3±4.2), and the intelligence level negatively correlated with Modularity in beta-band (r = -0.63, pcorr = 0.0253).
Conclusions
High modularity may reflect relatively high segregation, but not integration, of networks (Girn, Mills, Christoff, 2019). Accordingly, our findings may shed light on the neural mechanisms of the general inefficiency of global cognitive processing in the case of intellectual decline related to different mental disorders. Funding: This research has been supported by the Interdisciplinary Scientific and Educational School of Lomonosov Moscow State University ‘Brain, Cognitive Systems, Artificial Intelligence’.
Disclosure
No significant relationships.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.