We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
In this paper some recent topological applications of Riemann surface theory and especially of their associated theta functions (in different geometric incarnations) are surveyed, taking the circle of ideas around geometric quantization as a vantage point. They include classical and quantum monodromy of 2D-integrable systems and the construction of unitary Riemann surface braid group representations (aimed, in particular, at devising a mathematical interpretation of the Laughlin wave functions emerging in condensed matter physics). The noncommutative version of theta functions due to A. Schwarz is briefly discussed, showing in particular its efficacy in Fourier–Mukai–Nahm computations.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.