We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We study Morita equivalence for idempotent rings with involution. Following the ideas of Rieffel, we define Rieffel contexts, and we also introduce Morita $*$-contexts and enlargements for rings with involution. We prove that two idempotent rings with involution have a joint enlargement if and only if they are connected by a unitary and full Rieffel context. These conditions are also equivalent to having a unitary and surjective Morita $*$-context between those rings. We also examine how the mentioned conditions are connected to the existence of certain equivalence functors between the categories of firm modules over the given rings with involution.
We apply the filtered and graded methods developed in earlier works to find (noncommutative) free group algebras in division rings.
If $L$ is a Lie algebra, we denote by $U(L)$ its universal enveloping algebra. P. M. Cohn constructed a division ring $\mathfrak{D}_{L}$ that contains $U(L)$. We denote by $\mathfrak{D}(L)$ the division subring of $\mathfrak{D}_{L}$ generated by $U(L)$.
Let $k$ be a field of characteristic zero, and let $L$ be a nonabelian Lie $k$-algebra. If either $L$ is residually nilpotent or $U(L)$ is an Ore domain, we show that $\mathfrak{D}(L)$ contains (noncommutative) free group algebras. In those same cases, if $L$ is equipped with an involution, we are able to prove that the free group algebra in $\mathfrak{D}(L)$ can be chosen generated by symmetric elements in most cases.
Let $G$ be a nonabelian residually torsion-free nilpotent group, and let $k(G)$ be the division subring of the Malcev–Neumann series ring generated by the group algebra $k[G]$. If $G$ is equipped with an involution, we show that $k(G)$ contains a (noncommutative) free group algebra generated by symmetric elements.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.