We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We propose a scheme for terahertz (THz) radiation generation by non-linear mixing of two cosh-Gaussian laser beams in axially magnetized plasma with spatially periodic density ripple where electron-neutral collisions have been taken into account. The laser beams exert a non-linear ponderomotive force due to spatial non-uniformity in the intensity. The plasma electrons acquire non-linear oscillatory velocity under the influence of ponderomotive force. This oscillatory velocity couples with preformed density ripples (n′ = n0αeiαz) to generate a strong transient non-linear current that resonantly derives THz radiation of frequency ~ωh (upper hybrid frequency). Laser frequencies (ω1 and ω2) are chosen such that the beat frequency (ω) lies in the THz region. The periodicity of density ripple provides phase-matching conditions (ω = ω1 − ω2 and $\vec k = \vec k_1 - \vec k_2 + {\rm \vec \alpha} $) to transfer maximum momentum from laser to THz radiation. The axially applied external magnetic field can be utilized to enhance the non-linear coupling and control various parameters of generated THz wave. The effects of decentered parameters (b), collisional frequency (νen), and magnetic field strength (B0 = ωcm/e) are analyzed for strong THz radiation generation. Analytical results show that the amplitude of THz wave enhances with decentered parameters as well as with the magnitude of axially applied magnetic field. The THz amplitude is found to be highly sensitive to collision frequency.
A scheme of terahertz radiation generation is proposed by beating of two extra-ordinary lasers having frequencies and wave numbers $\lpar {\rm \omega}_1\comma \; \vec k_1 \rpar $ and $\lpar {\rm \omega}_2\comma \; \vec k_2 \rpar $, respectively in a magnetized plasma. Terahertz wave is resonantly excited at frequency $\lpar {\rm \omega}_1 - {\rm \omega}_2 \rpar $ and wave number (k1 − k2 + q) with a wave number mismatch factor q which is introduced by the periodicity of plasma density ripples. In this process, the lasers exert a beat ponderomotive force on plasma electrons and impart them an oscillatory velocity with both transverse and longitudinal components in the presence of transverse static magnetic field. The oscillatory velocity couples with density ripples and produces a nonlinear current that resonantly excites the terahertz radiation. Effects of periodicity of density ripples and applied magnetic field are analyzed for strong THz radiation generation. The terahertz radiation generation efficiency is found to be directly proportional to the square of density ripple amplitude and rises with the magnetic field strength. With the optimization of these parameters, the efficiency ~10−3 is achieved in the present scheme. The frequency and power of generated THz radiation can be better tuned with the help of parameters like density ripple amplitude, periodicity and applied magnetic field strength in the present scheme.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.