The reticulorumen, as the main fermentation site of ruminants, delivers energy in the form of short-chain fatty acids (SCFA) for both the animal as well as the ruminal wall. By absorbing these SCFA, the ruminal epithelium plays a major role in the maintenance of intraruminal and intraepithelial acid–base homoeostasis as well as the balance of osmolarity. It takes up SCFA via several pathways which additionally lead to either a reduction of protons in the ruminal lumen or the secretion of bicarbonate, ultimately buffering the ruminal content effectively. Nutrition of the epithelium itself is achieved by catabolism of the SCFA, especially butyrate. Catabolism of SCFA also helps to maintain a concentration gradient across the epithelium to ensure efficient SCFA uptake and stability of the epithelial osmolarity. Furthermore, the ruminal epithelium forms a tight barrier against pathogens, endotoxins or biogenic amines, which may emerge from ruminal microorganisms and feed. Under physiological conditions, it reduces toxin uptake to a minimum. Moreover, the epithelium seems to have the ability to degrade biogenic amines like histamine. Nonetheless, in high performance production animals like dairy cattle, the reticulorumen is confronted with large amounts of rapidly fermentable carbohydrates. This may push the epithelium to its limits, even though it possesses a great capacity to adapt to varying feeding conditions. If the epithelial limit is exceeded, increasing amounts of SCFA lead to an acidotic imbalance that provokes epithelial damage and thereby elevates the entrance of pathogens and other potentially harmful substances into the animal's body. Hence, the ruminal epithelium lays the foundation for the animal's health, and in order to ensure longevity and high performance of ruminant farm animals, it should never be overburdened.