Let be the sequence of partial sums of independent N(μ, 1) random variables. The boundary in the {(n, Sn)} plane which minimizes the expected number of times n that Sn will be below a boundary when μ = θ > 0 subject to a given expected number of visits that Sn will be above the same boundary when μ = 0 is shown to be linear and is also characterized. Similar results are shown for Brownian motion.