Let W (s, t), s, t ≧ 0, be the two-parameter Yeh–Wiener process defined on the first quadrant of the plane, that is, a Gaussian process with independent increments in both directions. In this paper, a lower bound for the distribution of the supremum of W (s, t) over a rectangular region [0, S]×[0, T], for S, T > 0, is given. An upper bound for the same was known earlier, while its exact distribution is still unknown.