We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The anatomy of the membranous labyrinth within the vestibule has direct implications for surgical intervention. The anatomy of the otoliths has been studied, but there is limited information regarding their supporting connective tissue structures such as the membrana limitans in humans.
Methods
One guinea pig and 17 cadaveric human temporal bones were scanned using micro computed tomography, after staining with 2 per cent osmium tetroxide and preservation with Karnovsky's solution, with a resolution from 1 µm to 55 µm. The data were analysed using VGStudio Max software, rendered in three-dimensions and published in augmented reality.
Results
In 50 per cent of ears, the membrana limitans attached directly to the postero-superior part of the stapes footplate. If attachments were present in one ear, they were present bilaterally in 100 per cent of cases.
Conclusion
Micro computed tomography imaging allowed three-dimensional assessment of the inner ear. Such assessments are important as they influence the surgical intervention and the evolution of future innovations.
Previous evidence shows that the n10 component of the ocular vestibular evoked myogenic potential indicates utricular function, while the p13 component of the cervical vestibular evoked myogenic potential indicates saccular function. This study aimed to assess the possibility of differential utricular and saccular function testing in the clinic, and whether loss of saccular function affects utricular response.
Methods:
Following vibration conduction from the mid-forehead at the hairline, the ocular n10 component was recorded by surface electromyograph electrodes beneath both eyes, while the cervical p13–n23 component was recorded by surface electrodes over the tensed sternocleidomastoid muscles.
Results:
Fifty-nine patients were diagnosed with probable inferior vestibular neuritis, as their cervical p13–n23 component was asymmetrical (i.e. reduced or absent on the ipsilesional side), while their ocular n10 component was symmetrical (i.e. normal beneath the contralesional eye).
Conclusion:
The sense organ responsible for the cervical and the ocular vestibular evoked myogenic potentials cannot be the same, as one response was normal while the other was not. Reduced or absent saccular function has no detectable effect on the ocular n10 component. On vibration stimulation, the ocular n10 component indicates utricular function and the cervical p13–n23 component indicates saccular function.
Vestibular evoked myogenic potentials are short latency electrical impulses that are produced in response to higher level acoustic stimuli. They are used clinically to diagnose sacculocollic pathway dysfunction.
Aim:
This study aimed to compare the vestibular evoked myogenic potential responses elicited by click stimuli and short duration tone burst stimuli, in normal hearing individuals.
Method:
Seventeen subjects participated. In all subjects, we assessed vestibular evoked myogenic potentials elicited by click and short duration tone burst stimuli.
Results and conclusion:
The latency of the vestibular evoked myogenic potential responses (i.e. the p13 and n23 peaks) was longer for tone burst stimuli compared with click stimuli. The amplitude of the p13–n23 waveform was greater for tone burst stimuli than click stimuli. Thus, the click stimulus may be preferable for clinical assessment and identification of abnormalities as this stimulus has less variability, while a low frequency tone burst stimulus may be preferable when assessing the presence or absence of vestibular evoked myogenic potential responses.
Disorders of balance often pose a diagnostic conundrum for clinicians, and a multitude of investigations have emerged over the years. Vestibular evoked myogenic potential testing is a diagnostic tool which can be used to assess vestibular function. Over recent years, extensive study has begun to establish a broader clinical role for vestibular evoked myogenic potential testing.
Objectives:
To provide an overview of vestibular evoked myogenic potential testing, and to present the evidence for its clinical application.
Review type:
Structured literature search according to evidence-based medicine guidelines, performed between November 2008 and April 2009. No restrictions were applied to the dates searched.
Conclusion:
The benefits of vestibular evoked myogenic potential testing have already been established as regards the diagnosis and monitoring of several clinical conditions. Researchers continue to delve deeper into potential new clinical applications, with early results suggesting promising future developments.
The auditory brainstem response consists of fast and slow waves. The acoustically evoked, short latency negative response is a large, negative deflection with a latency of 3 milliseconds which has been reported in patients with profound hearing loss. It may be of vestibular, particularly saccular, origin, as is the vestibular evoked myogenic potential.
Purpose:
To assess the presence of acoustically evoked, short latency negative responses in children with severe to profound sensorineural hearing loss.
Materials and methods:
Twenty-three children (46 ears) with sensorineural hearing loss underwent audiological evaluation and auditory brainstem response, vestibular evoked myogenic potential and caloric testing.
Results:
An acoustically evoked, short latency negative response was present in 30.43 per cent of ears and absent in 69.57 per cent. Vestibular evoked myogenic potentials were recorded in all ears in the former group, but in only 53.13 per cent in the latter group. Caloric testing was normal in 82.6 per cent of the total ears tested.
Conclusion:
The presence of an acoustically evoked, short latency negative response is dependent not on residual hearing but on normal saccular function. This response can be measured in patients who cannot contract their neck muscles.
The influence of congenital cytomegalovirus infection on cochlear function has been well recognised; however, its impact on the vestibular system in infants has not been examined. The purpose of the present study was to evaluate vestibular function in a group of infants, using caloric stimulation tests and vestibular-evoked myogenic potential measurements.
Materials and methods:
Vestibular-evoked myogenic potentials and auditory brainstem responses were recorded and caloric stimulation was performed in 66 infants aged three months, comprising 40 healthy controls and 26 infants with congenital cytomegalovirus infection.
Results:
No reaction to caloric stimulation was elicited from 16 examined ears, no vestibular-evoked myogenic potentials were recorded from 12 ears, and profound sensorineural hearing loss was diagnosed in eight ears. Pathological results were observed predominantly in infants with symptoms of intrauterine congenital cytomegalovirus infection present at birth.
Conclusions:
In infants with clinical symptoms of congenital CMV infection present at birth, abnormal vestibular test results occurred more frequently than abnormal auditory brainstem response results. Vestibular organs should be routinely examined in individuals with congenital cytomegalovirus infection.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.