This study presents a direct numerical simulation that investigates the transport mechanisms of sand particles in the neutrally stable atmospheric Ekman boundary layer (AEBL). The simulation models the AEBL in a half-channel flow, taking into account the Earth's rotation and adding a Coriolis term to the Navier–Stokes equations. The Lagrangian point-particle method with one-way coupling is used to track the sand particles. The main objective is to examine the impact of gravity and particle Stokes number on the sand particle dynamics. The results indicate that gravity has a significant effect on large-size sand particles, as seen in the mean and root-mean-square sand velocity profiles. The slip velocity profiles of sand particles relative to the surrounding air show that larger particles experience higher drag forces in the viscous sublayer, which hinders their forward movement. This effect is also amplified by gravity. Furthermore, the mean profiles of the streamwise and spanwise slip velocities exhibit distinct demarcations of the viscous sublayer, buffer layer and log-law region. The spatial and temporal Voronoï analysis reveals that gravity increases the clustering level of sand particles in the entire turbulent Ekman layer and reduces the time for the change of the Voronoï volume, particularly for large-size particles.