We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
This is a survey of constructive and computable measure theory with an emphasis on the close connections with algorithmic randomness. We give a brief history of constructive measure theory from Brouwer to the present, emphasizing how Schnorr randomness is the randomness notion implicit in the work of Brouwer, Bishop, Demuth, and others. We survey a number of recent results showing that classical almost everywhere convergence theorems can be used to characterize many of the common randomness notions including Schnorr randomness, computable randomness, and Martin-Löf randomness. Last, we go into more detail about computable measure theory, showing how all the major approaches are basically equivalent (even though the definitions can vary greatly).
Ergodic theory is concerned with dynamical systems -- collections of points together with a rule governing how the system changes over time. Much of the theory is concerned with the long term behavior of typical points-- how points behave over time, ignoring anomalous behavior from a small number of exceptional points. Computability theory has a family of precise notions of randomness: a point is "algorithmically random'' if no computable test can demonstrate that it is not random. These notions capture something essential about the informal notion of randomness: algorithmically random points are precisely the ones that have typical orbits in computable dynamical systems. For computable dynamical systems with or without assumptions of ergodicity, the measure 0 set of exceptional points for various theorems (such as Poincaré's Recurrence Theorem or the pointwise ergodic theorem) are precisely the Schnorr or Martin-Löf random points identified in algorithmic randomness.
We discuss the different contexts in which relativization occurs in randomness and the effect that the relativization chosen has on the results we can obtain. We study several characterizations of the K-trivials in terms of concepts ranging from cuppability to density, and we consider a uniform relativization for randomness that gives us more natural results for computable randomness, Schnorr randomness, and Kurtz randomness than the classical relativization does (the relativization for Martin-Löf randomness is unaffected by this change). We then evaluate the relativizations we have considered and suggest some avenues for further work.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.