We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We investigate families of minimal rational curves on Schubert varieties, their Bott–Samelson desingularizations, and their generalizations constructed by Nicolas Perrin in the minuscule case. In particular, we describe the minimal families on small resolutions of minuscule Schubert varieties.
We obtain an algorithm computing the Chern–Schwartz–MacPherson (CSM) classes of Schubert cells in a generalized flag manifold $G/B$. In analogy to how the ordinary divided difference operators act on Schubert classes, each CSM class of a Schubert class is obtained by applying certain Demazure–Lusztig-type operators to the CSM class of a cell of dimension one less. These operators define a representation of the Weyl group on the homology of $G/B$. By functoriality, we deduce algorithmic expressions for CSM classes of Schubert cells in any flag manifold $G/P$. We conjecture that the CSM classes of Schubert cells are an effective combination of (homology) Schubert classes, and prove that this is the case in several classes of examples. We also extend our results and conjecture to the torus equivariant setting.
K. Ding studied a class of Schubert varieties ${{X}_{\lambda }}$ in type A partial flag manifolds, indexed by integer partitions $\text{ }\!\!\lambda\!\!\text{ }$ and in bijection with dominant permutations. He observed that the Schubert cell structure of ${{X}_{\lambda }}$ is indexed by maximal rook placements on the Ferrers board ${{B}_{\lambda \text{ }}}$, and that the integral cohomology groups ${{H}^{*}}\left( {{X}_{\lambda }};\,\mathbb{Z} \right),\,{{H}^{*}}\left( {{X}_{\mu }};\,\mathbb{Z} \right)$ are additively isomorphic exactly when the Ferrers boards ${{B}_{\lambda \text{ }}}$, ${{B}_{\mu }}$ satisfy the combinatorial condition of rook-equivalence.
We classify the varieties ${{X}_{\lambda }}$ up to isomorphism, distinguishing them by their graded cohomology rings with integer coefficients. The crux of our approach is studying the nilpotence orders of linear forms in the cohomology ring.
Bott–Samelson varieties are an important tool in geometric representation theory [1, 3, 10, 25]. They were originally defined as desingularizations of Schubert varieties and share many of the properties of Schubert varieties. They have an action of a Borel subgroup, and the projective coordinate ring of a Bott–Samelson variety splits into certain generalized Demazure modules (which also appear in other contexts [22, 23]). Standard Monomial Theory, developed by Seshadri and the first author [15, 16], and recently completed by the second author [20], gives explicit bases for the Demazure modules associated to Schubert varieties. In this paper, we extend the techniques of [20] to give explicit bases for the generalized Demazure modules associated to Bott–Samelson varieties, thus proving a strengthened form of the results announced by the first and third authors in [12] (see also [13]). We also obtain more elementary proofs of the cohomology vanishing theorems of Kumar [10] and Mathieu [25]; of the projective normality of Bott–Samelson varieties; and of the Demazure character formula.
We establish one direction of a conjecture by Lakshmibai and Sandhya which describes combinatorially the singular locus of a Schubert variety. We prove that the conjectured singular locus is contained in the singular locus.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.