Monitoring a very frequently administered educational test with a relatively short history of stable operation imposes a number of challenges. Test scores usually vary by season, and the frequency of administration of such educational tests is also seasonal. Although it is important to react to unreasonable changes in the distributions of test scores in a timely fashion, it is not a simple matter to ascertain what sort of distribution is really unusual. Many commonly used approaches for seasonal adjustment are designed for time series with evenly spaced observations that span many years and, therefore, are inappropriate for data from such educational tests. Harmonic regression, a seasonal-adjustment method, can be useful in monitoring scale stability when the number of years available is limited and when the observations are unevenly spaced. Additional forms of adjustments can be included to account for variability in test scores due to different sources of population variations. To illustrate, real data are considered from an international language assessment.