We show that any n-vertex complete graph with edges coloured with three colours contains a set of at most four vertices such that the number of the neighbours of these vertices in one of the colours is at least 2n/3. The previous best value, proved by Erdős, Faudree, Gould, Gyárfás, Rousseau and Schelp in 1989, is 22. It is conjectured that three vertices suffice.